Monday, March 1, 2010

зона проводимости

природа кристаллических решеток
Обычно в литературе металлическая связь описывается, как осуществленная посредством обобществления внешних электронов атомов и не обладающая свойством направленности. Хотя встречаются попытки (см. ниже) объяснения направленной металлической связи т.к. элементы кристализуются в определенный тип решетки. В работе "К вопросу о металлической связи в плотнейших упаковках химических элементов" показано, что металлическая связь в плотнейших упаковках (ГЕК и ГЦК) между центральноизбранным атомом и его соседями в общем случае, предположительно, осуществляется посредством 9 (девяти) направленных связей, в отличие от числа соседних атомов равного 12 (двенадцати) (координационное число). Металлическая валентность элемента в его монокристалле и валентность этого элемента по кислороду, водороду - разные понятия.

Введение
Пока невозможно в общем случае вывести из квантовомеханических расчетов кристаллическую структуру металла по электронному строению атома, хотя, например, Ганцхорн и Делингер указали на возможную связь между наличием кубической объемно-центрированной решетки в подгруппах титана, ванадия, хрома и наличием в атомах этих металлов валентных d- орбиталей. Нетрудно заметить, что четыре гибридные орбитали направлены по четырем телесным диагоналям куба и хорошо приспособлены для связи каждого атома с его 8 соседями в кубической объемноцентрированной решетке. При этом оставшиеся орбитали направлены к центрам граней элементарной ячейки и, возможно, могут принимать участие в связи атома с шестью его вторыми соседями [3] с.99.
Первое координационное число (К.Ч.1) "8" плюс второе координационное число (К.Ч.2) "6" равно "14". Попытаемся связать внешние электроны атома данного элемента со структурой его кристаллической решетки, учитывая необходимость направленных связей (химия) и наличие обобществленных электронов (физика), ответственных за гальваномагнитные свойства.
Согласно [1] с.20, число Z- электроны в зоне проводимости, получено авторами, предположительно, исходя из валентности металла по кислороду, водороду и обязано быть подвергнуто сомнению, т.к. экспериментальные данные по Холлу и модулю всестороннего сжатия близки к теоретическим только для щелочных металлов. ОЦК решетка, Z=1 не вызывает сомнений. Координационное число равно 8.
На простых примерах покажем, что на одну связь у алмаза при плотности упаковки 34% и координационном числе 4 приходится 34%:4=8,5%.
У кубической примитивной решетки плотность упаковки 52% и координационное число 6 приходится 52%:6=8,66%.
У кубической объемноцентрированной решетки плотность упаковки 68% и координационное число 8 приходится 68%:8=8,5%.
У кубической гранецентрированной решетки плотность упаковки 74% и координационное число 12 приходится 74%:12=6.16%, а если 74%:9=8,22%.
У гексагональной решетки плотность упаковки 74% и координационное число 12 приходится 74%:12=6,16%, а если 74%:9=8,22%.
Очевидно, что эти 8,66-8,22% несут в себе некий физический смысл. Оставшиеся 26% кратны 8,66 и 100% гипотетическая плотность упаковки возможна при наличии 12 связей. Но реальна ли такая возможность?
Внешние электроны последней оболочки или подоболочек атома металла образуют зону проводимости. Число электронов в зоне проводимости влияет на постоянную Холла, коэффициент всестороннего сжатия и т.д. Построим модель металла-элемента так, чтобы оставшиеся, после заполнения зоны проводимости, внешние электроны последней оболочки или подоболочек атомного остова неким образом влияли на строение кристаллической структуры (например: для ОЦК решетки-8 "валентных" электронов, а для ГЕК и ГЦК -12 или 9).
Очевидно, что для подтверждения нашей модели необходимо сравнить экспериментальные и теоретические данные по Холлу, коэффициенту всестороннего сжатия и т.д.
ГРУБОЕ, КАЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА ЭЛЕКТРОНОВ В ЗОНЕ ПРОВОДИМОСТИ МЕТАЛЛА - ЭЛЕМЕНТА. ОБЪЯСНЕНИЕ ФАКТОРОВ, ВЛИЯЮЩИХ НА ОБРАЗОВАНИЕ ТИПА РЕШЕТКИ МОНОКРИСТАЛЛА И НА ЗНАК ПОСТОЯННОЙ ХОЛЛА.
(Алгоритм построения модели)
Измерения поля Холла позволяют определить знак носителей заряда в зоне проводимости. Одна из замечательных особенностей эффекта Холла заключается, однако, в том, что в некоторых металлах коэффициент Холла положителен, и поэтому носители в них должны, видимо, иметь заряд, противоположный заряду электрона [1]. При комнатной температуре это относится к следующим металлам: ванадий, хром, марганец, железо, кобальт, цинк, цирконий, ниобий, молибден, рутений, родий, кадмий, церий, празеодим, неодим, иттербий, гафний, тантал, вольфрам, рений, иридий, таллий, свинец [2]. Решение этой загадки должна дать полная квантовомеханическая теория твердого тела.
Примерно, как для некоторых случаев применения граничных условий Борна-Кармана, рассмотрим сильно упрощенный одномерный случай зоны проводимости. Вариант первый: тонкая замкнутая трубка, полностью заполненная электронами кроме одного. Диаметр электрона примерно равен диаметру трубки. При таком заполнении зоны, при локальном передвижении электрона, наблюдается противоположное движение "места" незаполнившего трубку, электрона, то есть движение неотрицательного заряда. Вариант второй: в трубке один электрон - возможно движение только одного заряда - отрицательно заряженного электрона. Из этих двух крайних вариантов видно, что знак носителей, определяемых по коэффициенту Холла, в какой-то степени, должен зависеть от наполнения зоны проводимости электронами (рис.1).
Рис .1. Схематическое изображение зоны проводимости двух разных металлов. (масштабы не соблюдены).
а) - вариант первый; б) - вариант второй.
На порядок движения электронов также будут накладывать свои условия и структура зоны проводимости, и температура, и примеси, дефекты, а для магнитных материалов и рассеяние на магнитных квазичастицах - магнонах.
Так как рассуждения наши грубые, учитываем в дальнейшем пока только наполнение зоны проводимости электронами. Заполним зону проводимости электронами так, чтобы внешние электроны атомных остовов оказывали влияние на образование типа кристаллизационной решетки. Предположим, что число внешних электронов на последней оболочке атомного остова, после заполнения зоны проводимости, равно числу атомов соседей (координационному числу) [5]. Координационные числа ГЕК, ГЦК (гексагональной и гранецентрированной) плотнейших упаковок 12 и 18, а объемноцентрированной решетки (ОЦК) 8и14[3]. Для ГЕК и ГЦК рассмотрим также число 9.
Построим таблицу с учетом вышеизложенного. Температура комнатная
таблицу и продолжение смотрите на сайте-

http://kristall.lan.krasu.ru/Science/publ_grodno.html

Выводы
Несмотря на грубые допущения, из таблицы видно, что, чем больше атом элемента отдает электронов в зону проводимости, тем положительнее постоянная Холла, и, наоборот, постоянная Холла отрицательна для элементов, отдавших в зону проводимости один-два электрона, что не противоречит выводам Пайерлса , а также просматривается связь между электронами проводимости (Z) и валентными электронами (Zостов), обуславливающими кристаллическую структуру.
Фазовые переходы элемента из одной решетки в другую можно объяснить перебросом в зону проводимости металла одного из внешних электронов атомного остова или его возвратом из зоны проводимости на внешнюю оболочку остова под воздействием внешних факторов (давление, температура).
Пытались дать разгадку, а получили новую, довольно хорошо объясняющую физико-химические свойства элементов, загадку - это "координационное число орбиталей" = 9 (девять) для ГЦК и ГЕК. Такое частое явление числа-9 в приведенной таблице наводит на мысль, что плотнейшие упаковки недостаточно исследованы.
Методом обратного отсчета от экспериментальных значений коэффициента всестороннего сжатия к теоретическим по формулам Ашкрофта и Мермина [1], определяя число Z, можно убедиться о его близком совпадении с приведенным в таблице 1.
Металлическая связь представляется обусловленной: как обобществленными электронами проводимости, так и "валентными" - внешними электронами атомного остова.
Литература
Н. Ашкрофт, Н. Мермин "Физика твердого тела". Москва, 1979г.
Г. В. Самсонов "Справочник "Свойства элементов". Москва, 1976г.
Г. Кребс "Основы кристаллохимии неорганических соединений". Москва, 1971r.
Я. Г. Дорфман, И. К. Кикоин "Физика металлов". Ленинград, 1933г.
Г. Г. Скидельский "От чего зависят свойства кристаллов". "Инженер" № 8, 1989г.

ПРИЛОЖЕНИЕ 2Теоретический расчет модуля всестороннего сжатия (В)
Конечно, давление газов свободных электронов само по себе, одно, не полностью определяет сопротивление металла сжатию, тем не менее во втором случае расчета теоретический модуль всестороннего сжатия лежит ближе к экспериментальному, причем с одной стороны. Очевидно необходим учет второго фактора - влияние на модуль "валентных" или внешних электронов атомного остова, определяющих кристаллическую решетку.

Свойства материалов.

Электроны проводимости вносят низкий вклад в теплоемкость металла(закон Дюлонга-Пти).Теоретический же расчет по модели Друде показывает,что вклад электронов втеплоемкость должен быть значительным. Атомы металлов плотно упакованы, но не в один, а в несколько типов упаковок - кристаллические решетки. Значит кроме плотной упаковки, при формировании кристаллической решетки металла, играют роль также и химические свойства атомов (атомных остовов). Металлическая связь объясняется объединением нескольких внешних электронов атомов металла в общей, для этих электронов, зоне проводимости. Существование зоны доказано в известном опыте, когда возникал кратковременный ток при торможении предварительно раскрученной катушки, а число электронов проводимости определено из опытов Холла. Как определить “ химические” свойства атомного остова? Для этого определим число гибридных орбиталей атомного остова, окруженного и притягиваемого зоной проводимости. У алмаза плотность упаковки атомов в кристаллической решеткеравна 34 процентам, а координационное число (число ближайших атомовдля центральноизбранного) равно 4. На одну гибридную орбиталь атомаалмаза приходится 34 разделить на 4 равно 8,5 процентов.По аналогии для атома натрия 68 разделить на 8 равно 8,5 процентов.Отсюда число гибридных орбиталей для атомов плотнейших упаковокбудет равно 74 разделить на 8,5 равно9 шт. (орбиталей). Изложено в работе “К вопросу о металлической связи вплотнейших упаковках химических элементов”

http://kristall.lan.krasu.ru/Science/publ_grodno.html

http://sciteclibrary.ru/eng/catalog/pages/5216.html (inEnglish)

Электроны внешних оболочек или подоболочек сначала заполняют гибридные орбитали, а оставшиеся электроны размещаются в зоне проводимости. Предположительно, в реальном пространстве, зона проводимости должна находится в районе поверхности ячейки Вигнера-Зейтца. Грубо, она напоминает собой пчелиные соты. Поэтому электроны проводимости вносят низкий вклад в теплоемкость металла, т.к. они по сути находятся в пространстве двумерном со сложной поверхностью. Здесь ошибка Друде. А периодичность для электрона проводимости в кристалле связана не столько с постоянной решетки , сколько со стереометрией гибридных (валентных)орбиталей атомных остовов. Смотри осциляции в опытах де-Гааза-ван-Альфена по исследованию поверхности Ферми. С учетом вышеизложенного ясно, что механизмы заполнения и расчетов электронных уровней для атомных остовов и для зоны проводимости должны быть различными. Положительным в статье видится то, что расчеты свойств материалов можно вести сразу для химического элемента, а недля пустого куба Борна-Кармана. Все это наверное диковато для квантового механика , так будем терпимы к инакомыслящим.

сверхпроводимость в монокристаллах металлов

Почему решили связать появление сверхпроводимости с тепловыми колебаниями атомов решетки? Потому, что материалы изотопов элемента имели разные температуры перехода в сверхпроводящее состояние. Конечно такая зависимость есть но она незначительна. Сверхроводимость не зависит от типа решетки. Вокруг сверхпроводника ниобия в таблице элементов много проводников, но не сверх. А тепловые колебания их атомов практически такие же. Почему же у других металлов сверхпроводимость не обнаруживается? Тепловые колебания атомов не главный механизм сверхпроводимости! Проводимость конечно зависит от температуры. Но у меди, серебра почему-то при самых низких температурах сверхпроводимость не наблюдается, а у проводника ниобия, который проводит значительно хуже меди и серебра-сверхпроводимость есть. Есть она и у более тяжелого свинца с типом кристаллической решетки меди. Значит не тепловые колебания главные здесь, а какие-то процессы в зоне проводимости. Для их рассмотрения необходимо знать число электронов, отдаваемое каждым атомом решетки в зону проводимости. Авторы БКШ утверждают, что в сверхпроводимости участвует каждый десятитысячный электрон , а согласно теории твердого тела в простой проводимости участвует от одного до примерно трех электронов от атома или грубо каждый десятый или сотый электрон. Тем не менее токи сверхпроводимости значительно больше токов обычной проводимости! Что-то происходит с электронами в зоне проводимости! Задача поставлена. Зона проводимости представляется мне -поверхность ячейки Вигнера-Зейтца,которая располагается между атомами кристаллической решетки. А больше электрону проводимости и негде находиться, как только на этой поверхности. При переходе в сверхпроводящее состояние в зоне проводимости электроны должны образовать коллектив или стать зависимыми друг от друга. Значит в зоне проводимости число электронов отданное атомом должно быть значительным по сравнению с медью, никелем или серебром,которые не сверхпроводники. Число электронов проводимости в металлах-элементах приводится в работе-http://kristall.lan.krasu.ru/Science/publ_grodno.html У ванадия,ниобия и тантала по 5 электронов проводимости на атом и соответственно температуры переходов Тс=5,30...9,26 и 4,48К. У; гафния, титана и циркония по 3 электрона, а Тс=0,09...0,39 и 0,65К. Посмотрим таблицу элементов справа-там свинец, олово- по 4-5 электронов и алюминий, галий, индий, талий у которых по 2-3 электрона, а Тс=1,196...1,091...3,40...2,39 соответственно. У свинца и олова Тс=7,19 и 3,72 соответственно. Что и требовалось доказать. Так как зона проводимости поверхность, а электроны обладают спинами, то по моему организация электронов проводимости в коллектив идет посредством взаимодействия через спины. -------------------------------------------------------------------------------- Я здесь хочу сказать, что электроны проводимости конечно как-то объединяются, но только не так как в БКШ, когда они начинают заигрывать на расстоянии в несколько тысяч атомов между которыми находятся еще больше электронов и после этого "спариваются". Ясно и то,что число энергетических уровней в зоне проводимости не равно числу электронов проводимости (как в квантовой механике), а составляет величину равную числу электронов проводимости от атома кристаллической решетки, т.е. 1-5 или чуть больше. ---------------------------------------------------------------------
• Эффект Джозефсона ? Появилось много сообщений о сопутствующих сверхпроводимости магнитных явлениях. Поэтому представляется интересным расположить между двумя сверхпроводниками тонкий слой из ферромагнетика (железа например) или из диамагнетика-меди и проанализировать результат. Не сделает ли какой-нибудь из этих сэндвичей более высокой Тс?
• Повышение Тс. Согласно выше изложенного. Для повышения Тс в металлах могу предложить следующее. Отрицательно зарядить металлический образец и испытать его.

4 comments:

  1. in English with picturies

    http://sciteclibrary.ru/eng/catalog/pages/5216.html

    ReplyDelete
  2. К истокам квантовой механики.
    Французский ученый де-Бройль предположил , что электрон переносится волной материи, так как электроны подвергались дифракции при прохождении отверстия. Им приписывали свойства частиц и свойства волн. Позже эту волну назвали плотностью вероятности попадания электронов в определенные области.
    Но вернемся к эфиру и пусть он состоит из нейтральных частиц , полученных из соединений электронов и позитронов. Электрон двигаясь в эфире будет создавать волну из частиц эфира , которая при дифракции через отверстие увлечет его от прямолинейного направления.
    Туннелирование через барьер можно объяснить тем , что некоторые электроны падая на кристаллическую решетку барьера выбивают с обратной стороны электроны барьера , а не проходят через него. Ведь электроны пока никто не помечал.

    ReplyDelete
  3. О периодичности в монокристалле.
    Конечно электрон проводимости испытывает влияние ядер на расстоянии постоянной кристаллической решетки, но также и влияние внешних электронов атомного остова на значительно меньших расстояниях.

    ReplyDelete
  4. Что есть зона проводимости в реальном пространстве?
    Если мысленно удалить атомные остовы, то останется структура, напоминающая соты, там и находится зона проводимости.

    ReplyDelete